Exam VWO Math A

Formula sheet

Differentiation

rule	function	derivative
sum rule	$s(x)=f(x)+g(x)$	$s^{\prime}(x)=f^{\prime}(x)+g^{\prime}(x)$
product rule	$p(x)=f(x) \cdot g(x)$	$p^{\prime}(x)=f^{\prime}(x) \cdot g(x)+f(x) \cdot g^{\prime}(x)$
quotient rule	$q(x)=\frac{f(x)}{g(x)}$	$q^{\prime}(x)=\frac{f^{\prime}(x) \cdot g(x)-f(x) \cdot g^{\prime}(x)}{(g(x))^{2}}$
chain rule	$k(x)=f(u(x))$	$k^{\prime}(x)=f^{\prime}(u(x)) \cdot u^{\prime}(x)$ or $\frac{\mathrm{d} k}{\mathrm{~d} x}=\frac{\mathrm{d} f}{\mathrm{~d} u} \cdot \frac{\mathrm{~d} u}{\mathrm{~d} x}$

Rules for logarithms

rule	condition
$\log _{g}(a)+\log _{g}(b)=\log _{g}(a b)$	$g>0, g \neq 1, a>0, b>0$
$\log _{g}(a)-\log _{g}(b)=\log _{g}\left(\frac{a}{b}\right)$	$g>0, g \neq 1, a>0, b>0$
$k \cdot \log _{g}(a)=\log _{g}\left(a^{k}\right)$	$g>0, g \neq 1, a>0$
$\log _{g}(a)=\frac{\log _{p}(a)}{\log _{p}(g)}$	$g>0, g \neq 1, a>0, p>0, p \neq 1$

Sequences

The sum of an arithmetic sequence is given by:

$$
S=\frac{1}{2} N\left(u_{\text {first }}+u_{\text {last }}\right)
$$

Here N is the number of terms.

The sum of a geometric sequence with common ratio r is given by:

$$
S=\frac{u_{\text {last }+1}-u_{\text {first }}}{r-1} \quad \text { with } r \neq 1
$$

Rules for random variables

For two random variables X and Y, we have:

$$
\mathrm{E}(X+Y)=\mathrm{E}(X)+\mathrm{E}(Y)
$$

For two independent random variables X and Y, we have:

$$
\sigma(X+Y)=\sqrt{(\sigma(X))^{2}+(\sigma(Y))^{2}}
$$

If you have n independent random experiments, each with the same random variable X, then the following holds for the sum S and the mean \bar{X} :

$$
\begin{array}{ll}
\mathrm{E}(S)=n \cdot \mathrm{E}(X) & \mathrm{E}(\bar{X})=\mathrm{E}(X) \\
\sigma(S)=\sqrt{n} \cdot \sigma(X) & \sigma(\bar{X})=\frac{\sigma(X)}{\sqrt{n}}
\end{array}
$$

Binomial distribution

For a binomially distributed random variable X, where n is the number of trials and p the probability of success, the probability of k successes is equal to:

$$
\mathrm{P}(X=k)=\binom{n}{k} \cdot p^{k} \cdot(1-p)^{n-k}
$$

Furthermore: $\mathrm{E}(X)=n \cdot p$ and $\sigma(X)=\sqrt{n \cdot p \cdot(1-p)}$

Normal distribution

If X is normally distributed with mean μ and standard deviation σ, then:
$Z=\frac{X-\mu}{\sigma}$ follows a standard normal distribution with: $\mathrm{P}(X \leq g)=\mathrm{P}\left(Z \leq \frac{g-\mu}{\sigma}\right)$

